- 无标题文档
查看论文信息

中文题名:

 全固态及光纤超短脉冲激光放大研究    

姓名:

 吕志国    

学号:

 1305110243    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0803    

学科名称:

 光学工程    

学生类型:

 博士    

学位:

 博士    

学校:

 西安电子科技大学    

院系:

 物理与光电工程学院    

专业:

 光学工程    

第一导师姓名:

 魏志义    

第一导师单位:

 西安电子科技大学    

完成日期:

 2016-06-24    

答辩日期:

 2016-06-12    

外文题名:

 Amplification of Solid-State and Fiber Ultra-Short Pulse Lasers    

中文关键词:

 高重复频率 ; 高平均功率 ; 全正色散 ; 非线性偏振旋转 ; 谐波锁模 ; 棒状光子晶体光纤 ; 全光纤放大器 ; 预啁啾    

外文关键词:

 high repetition rate ; high average power ; all-normal-dispersion ; nonlinear polarization evolution ; harmonic mode-locking ; rod-type photonic crystal fiber ; all fiber amplifier ; pre-chirped    

中文摘要:

性能稳定可靠且重复频率为100 kHz-1 MHz的高平均功率高能量超短脉冲激光由于在激光精密微加工、临床医学、超快光谱和国防等方面的广泛应用,近年来倍受人们的重视。针对大量研究应用领域对高平均功率超快激光器的发展需求,本论文分别采用电光调制再生放大和多次单通放大相结合的技术以及声光调制的全光纤啁啾脉冲放大技术,系统开展了高重复频率、高脉冲能量全固态及光纤飞秒激光放大的研究,得到了重复频率百kHz、平均功率21 W的皮秒激光放大输出和重复频率为1 MHz、单脉冲能量为10.5 µJ的全光纤飞秒激光放大输出。

此外针对上述激光系统对结构紧凑、成本低廉、操作简易以及体积小巧的飞秒种子源要求,进一步采用具有保偏特性的大模场棒状光子晶体增益光纤与全正色散非线性偏振旋转锁模技术相结合的方法,进行了环境稳定的高功率全正色散棒状光纤飞秒锁模激光振荡器的研发,对于推动百瓦飞秒激光放大的前端系统向着简易化方向发展,取得了具有重要意义的结果。

论文的主要研究工作进展和取得的创新性成果有:

1、以全固态皮秒锁模激光振荡器作为种子源和808 nm高功率二极管激光器作为泵浦源,开展了高平均功率全固态Nd:YVO4皮秒激光的放大研究。该系统由再生放大器和三级单通功率放大器组成。为了提高放大效率,设计了脉冲在腔内往返一周四次通过增益介质的新型再生放大腔结构,将脉冲宽度10 ps、中心波长1064 nm、重复频率68 MHz的种子激光经过该再生腔进行脉冲选单和放大后,获得了重复频率为100 kHz、最高平均功率达2.6 W的激光输出。进一步经过三级单通功率放大器放大后,在该重复频率下最终得到了平均功率21 W、对应脉冲宽度为30 ps的结果,每一级的功率提取效率分别为31%、26% 和36%。在水平和垂直方向测量得最终放大激光的输出M2光束质量因子分别是2.0和1.9。

2、采用高掺杂Yb增益光纤,结合非线性偏振旋转锁模技术,实现了高信噪比且重频可调谐的全正色散飞秒谐波锁模光纤激光运转,并且给出了相应的理论解释。在22 MHz的基波锁模情况下,通过微调偏振控制器和双折射滤波片,得到了最高88 MHz的四次谐波锁模输出,相应的边模抑制比高达73 dB。经过腔外光栅对压缩后的脉冲宽度为624 fs。此外实验中还发现,在实现谐波锁模运转的过程中,调节波片和双折射滤光片的状态,腔内往返一周脉冲的个数和其时间间隔是可控制的,即具有连续的可调节性。以上现象对进一步理解和探索全正色散耗散孤子锁模内在机制具有重要意义。在此基础上,进而开展了低重复频率高能量全正色散锁模激光器的研究,在1.7 MHz重复频率下,首次采用双折射滤波片作为光谱调制器件,实现了同步的三波长锁模运转,而且获得了在全正色散多波长锁模激光器中的最高输出功率和最宽调谐范围,并基于四波混频的理论对同步三波长锁模机制进行了解释。

3. 采用纤芯直径为85 µm且具有保偏特性的棒状光子晶体光纤作为增益介质,在国内首次实现了环境稳定的高功率棒状光纤锁模激光器,得到了平均功率16 W、脉宽182 fs、重复频率58 MHz的输出结果。进一步,基于改进的振荡腔结构同时结合976 nm窄线宽100 W多模二极管激光泵浦,获得了功率31 W、脉宽124 fs、重复频率57.93 MHz和长期功率稳定性优于0.3%的高功率环境稳定的棒状光纤锁模激光器。此外采用自主研发的30 MHz飞秒激光振荡器作为种子源,将其先经过第一级单模光纤放大到321 mW后,通过光栅对引入负色散对脉冲展宽又经由第一级纤芯直径为85 µm的棒状光纤进行功率放大,实现了平均功率32.6 W、脉宽6.5 ps的激光脉冲序列输出。随后再经偏振相关的隔离器及第二级光子晶体光纤放大后,获得了53.4 W的平均功率激光输出。

4. 开展了啁啾脉冲放大飞秒光纤激光产生高能量飞秒脉冲的研究。利用自主研发的色散管理Yb光纤飞秒激光振荡器作为种子源,结合单模光纤时域色散展宽脉冲宽度和声光调制器进行重复频率控制以及后续的光纤放大,实现了重复频率为1 MHz、最高输出单脉冲能量为10.5 µJ的全光纤飞秒激光放大器,相应的压缩脉宽为804 fs。实验中发现在6.75 µJ能量输出时,相应的压缩脉宽为424 fs。这种高能量的全光纤飞秒激光放大器在超快激光加工、成像、眼科医学和高次谐波等研究领域中有广阔的应用前景。

外文摘要:

With the development of the ultrafast lasers, reliable and stable performance high power high energy ultrashort pulsed lasers with repetition rates from 100 kHz to 1 MHz have facilitated extensive applications in micro-fabrication, clinical medicine, spectroscopy and national defense fields and they have been concerned as a topic of research in recent years. Consequently, to meet the requirements of the development of the high average power ultrafast lasers in various areas of reaearch and application, this dissertation is focused on the investigation of the high repetition rate high energy 100 kHz, 21 W all-solid-state picosecond laser amplifier based on the hybrid amplification technology consisting of an electro-optic modulated regenerative amplifier and three-stage single pass power amplifiers and 1 MHz, 10.5 µJ all-fiber femtosecond laser amplifier based on the acousto-optic modulated all fiber chirped pulse amplification (CPA) scheme.

Together to cater for the requirements of the development of the high repetition rate hundreds of Watts laser amplifier systems for the femtosecond seed sources with compactness in structure and low cost and easy operation, further combining polarization maintaining (PM) large mode area (LMA) rod-type photonic crystal fiber (PCF) with nonlinear polarization evolution mode-locked technique, we conduct an experimental study on high power environmentally stable rod-type femtosecond mode-locked all-normal-dispersion (ANDi) fiber laser, which has an important significance for the development of the hundreds of watts laser systems toward the direction of the facilitation and compactness.

1. An efficient amplification of the picosecond Nd:YVO4 laser system at a repetition rate of 100 kHz based on highly stable all-solid-state picosecond laser oscillator as seed source and high power 808 nm diode lasers as pump sources is presented. This amplifier system consists of a regenerative amplifier and three-stage single pass power amplifiers. In order to improve the amplification efficiency of the regenerative amplifier, the Nd:YVO4 gain crystal in the regenerative cavity is put close to the pump mirror with a spatial distance of 8 mm to allow for four passes of the seed laser pulse through the gain crystal for each cavity round-trip period rather than two passes. As a front end,the regenerative amplifier emits average power of 2.6 W at 100 kHz repetition rates seeded with a 10 ps, 1064 nm mode-locked vanadate oscillator. Adopting the end-pumping scheme with 808 nm fiber coupled laser diodes as pump sources, the following three-stage booster amplifiers further amplify the average power to 21 W. The corresponding extraction efficiencies are 31%, 26% and 36%, respectively. The final pulse duration is approximately 30 ps and the beam quality factors M2 are 2.0 in the horizontal and 1.9 in the perpendicular direction, respectively. This laser may enable wide applications for micro-fabrication and laser matter interaction.

2. Tunable high peak signal-to-noise ratio (SNR) harmonically mode-locked ANDi femtosecond fiber laser has been developed based on highly doped Yb gain fiber and NPE technique and the corresponding theoretical explanation has also been provided. The external compressed pulse duration is 627 fs assuming a sech2 distribution with 600 lines/mm grating pair at the 4th harmonic of 88 MHz with 73 dB SNR. In addition, it is also experimentally found that multipulse soliton bunches with controllable pulse spacing and number could been realized in the formation process of the harmonic mode-locking, which promotes the further understanding of the ANDi dissipative soliton mode-locked operation. Furthermore, high energy low repetition rate ytterbium fiber triple-wavelength mode-locked laser has also been realized at 1.7 MHz repetition rate based on birefringent filter as spectral shaper. To our best knowledge, the widest tuning range (19 nm) and the highest output power (161.4 mW) in mode-locked operation have been obtained in this presented fiber laser and the corresponding mechanism has been explained based on four-wave mixing (FWM).

3、In view of the dissipative mechanism related mode-locked operation in ANDi ultrafast fiber lasers, which provides a possibility for the generation of the high power high energy laser pulses in theoretical, therefore adopting PM rod-type PCF with 85 µm core diameter, a 16 W, 182 fs environmentally stable high power rod-type mode-locked fiber laser oscillator has been firstly developed domestically at 58 MHz repetition rate based on ANDi scheme. Further, by optimization of the cavity structure and adopting more powerful wavelength-stabilization 976 nm laser diode as pump source, the highest 31 W mode-locked output power has been obtained with 124 fs compressible pulse width at a repetition rate of 57.93 MHz, and the measured short-term power fluctuations is 0.3% (RMS) over two hours. The newly developed high power high energy rod-type mode-locked fiber laser will find wide applications such as in high power fiber laser pumped femtosecond optical parametric oscillator and as a front-end seed source in hundreds of watts femtosecond laser amplifier system. In addition, aiming at realizing high power laser amplifier with high peak power without external compression, a MW peak power PM all rod-type fiber amplifier has been proposed, which consists of a home-made 30 MHz femtosecond mode-locked seed source, a core-pumped single mode preamplifier, a pre-chirper and two-stage rod-type fiber amplifiers. The seed pulse is firstly amplified to 321 mW in core-pumped preamplifier and then pre-chirped to 7.23 ps. After polarization through a Glan laser polarizer, the pulse train is injected into the first-stage rod-type fiber amplifier to be amplified to 32.6 W with 6.5 ps pulse duration. The pre-amplified pulse train is finally amplified to 53.4 W in the second-stage rod-type fiber amplifier. The adopted rod-type gain fibers have 85 µm core diameter and 260 µm pump cladding. However, due to the mismatch of the wavelengths from the pump diode with the absorption peak of the rod-type gain fiber in the second-stage amplifier, the amplification efficiency is low and further optimization is going on.

4、An all-fiber amplifier at 1 MHz repetition rate has been successfully developed based on self-made dispersion-management 32.7 MHz ytterbium fiber femtosecond mode-locked seed source and CPA scheme. By temporally stretching the pulses to hundreds of picoseconds in single mode fibers and reducing the repetition rate to 1 MHz with acousto-optic modulator, up to 10.5 µJ pulse energy could been obtained with 804 fs compressible pulse duration. The shortest pulse duration achieved is 424 fs corresponding to the uncompressed pulse energy of 6.75 µJ. The developed high energy all-fiber femtosecond laser amplifier will find wide applications in practice.

参考文献:
参考文献
[1] 周炳琨,高以智,阵倜嵘等. 激光原理[M]. 北京:国防工业出版社,2010.
[2] D. E. Spence, P. N. Kean, and W. Sibbett. 60-fsec pulse generation from a self-mode-locked Ti:Sapphire laser [J]. Opt. Lett., 1991, 16(1): 42-44.
[3] Donna Strickland and Gerard Mourou. Compression of amplified chirped optical pulses [J]. Opt.commun., 1985, 56 (3): 219-221.
[4] K. Samm, M. Hustedt, J. Stein, et al. 激光在纺织工业中的应用前景[J]. 国际纺织导报., 2011,1: 47-51.
[5] X. Liu, D. Du, and G. Mourou. Laser Ablation and Micromaching with Ultrashort Laser Pulses[J]. IEEE J. Quantum Electron., 1997, 33(10):1706-1716.
[6] S. Taccheo, R. Osellame, G. Cerullo, et al. Erbium-Ytterbium doped active waveguides at 1.5 um made by femtosecond micromaching [C]. 2003 OSA/ASSP.
[7] Guanghua Cheng, Yishan Wang, JunFang He, et al. Color center conversion by femtosecond pulse laser irradiation in LiF:F2 crystals [J]. Opt. Express., 2007, 15(14): 8938-8942.
[8] M. Hughes, W. Yang, and D. Hewak. Fabrication and acterization of femtosecond laser written waveguides in chalcogenide glass [J]. Appl. Phys. Lett., 2007, 90:131113.
[9] Junhe Zhou and Philippe Gallion. A mode mux/demux for multicore fibers with 2D core arrays [J]. IEEE Photon. Technol. Lett., 2014, 26(13): 1336-1339.
[10] J. Charrier, M. L. Anne, H. Lhermite, et al. Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical acterizations of plannar and rib optical waveguides [J]. J. Appl. Phys., 2008, 104: 073110.
[11] Haibin Zhang and Peter R. Herman. Chirped bragg grating waveguides directly written inside fused silica glass with an externally modulated ultrashort fiber laser [J]. IEEE Photon. Technol. Lett., 2009, 21(5):277-279.
[12] D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, et al. 2.1 um waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass [J]. Opt. Lett., 2012, 37(6): 996-998.
[13] Tomas Kohoutek, Mark A. Hughes, Jiri Orava, et al. Direct laser writing of relief diffraction gratings into a bulk chalcogenide glass [J]. J. Opt. Soc. Am. B., 2012 , 29(10): 2779-2786.
[14] A. Bhatnagar, A. K. Mallik, K. Mittholiya, et al. Femtosecond laser induced fabrication of a 1x2 splitter waveguide in BK7 glass [C]. International Conference on Fiber Optics and Photonics OSA 2012.
[15] Airán Ródenas, Guillermo Martin, Brahim Arezki, et al. Three-dimensional -infrared photonic circuits in chalcogenide glass [J]. Opt. Lett., 2012, 37(3): 392-394.
[16] Robert J. Williams, Ria G. Krämer, Stefan Nolte, et al. Femtosecond direct-writing of low-loss fiber bragg gratings using a continuous core-scanning technique [J]. Opt. Lett.,2013, 38(11):1918-1920.
[17] Jing Bai, Guanghua Cheng, Xuewen Long, et al. Polarization behavior of femtosecond laser written optical waveguides in Ti:sapphire [J]. Opt. Express., 2012, 20(14):15036-15044.
[18] Qiang An, Yuechen Jia, Hongliang Liu, et al. Ultrafast laser inscribed cladding waveguides in Nd:YAG crystal for -infrared wavelength [J]. Optics& laser Technology, 2014, 56: 382-386.
[19] G. Douglass, F. Dreisow, S. Gross, et al. Towards femtosecond laser written arrayed waveguide gratings [J]. Opt. Express., 2015, 23(16): 21392-21402.
[20] Jinman Lv, Yazhou Cheng, Weihao Yuan, et al. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal [J]. Opt. Mater. Express., 2015, 5 (6):1274-1280 .
[21] Ulf Hinze, André Egbert, and Boris Chichkov. Generation of picosecond hard-x-ray pulses in a femtosecond-laser-driven x-ray diode. Opt. Lett.,2004, 29(17):2079-2081.
[22] Wei-Min Wang, Shigeo Kawata, Zheng-Ming Sheng, et al. Efficient terahertz emission by -infrared laser pulses from gas targets. Opt. Lett., 2011, 36(14):2608-2610.
[23] A. McPherson, G. Gibson, H. Jara, et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gas. J. Opt. Soc. Am B., 1987, 4(4):595-601.
[24] Quan-Li Dong, Shou-Jun Wang, Quan-Ming Lu, et al. Plasmoid Ejection and secondary Current Sheet Generation from Magnetic Reconnection in Laser-Plasma interaction. Phys. Rev.Lett., 2012, 108(21):215001.
[25] M. Dantus, R. M. Bowman and A. H. Zewail. Femtosecond laser observations of molecular vibration and rotation. Nature,1990, 343(22):737-739.
[26] Jasper R. Clarkson, Brian C. Dian, et al. Direct measyrement of the energy thresholds to conformational isomerization in Tryptamine: Experiment and theory. J. Chem. Phys., 2005, 122:214311.
[27] Holger Lubatschowski, Alexander Heisterkamp, Fabian Will, et al. Ultrafast Laser Pulses for Medical Applications. Proceedings of SPIE., 2002, 4633:38-49.
[28] W. Drexler, U. Morgner, F. X. Kärter, et al. In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett., 1999, 24(17):1221-1223.
[29] Zhaohua Wang, Cheng Liu, Zhongwei Shen, et al. High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier [J]. Opt. Lett., 2011, 36(16): 3194-3196.
[30] Mathias Siebold, Marco Hornung, Ragnar Boedefeld, et al. Terawatt diode-pumped Yb:CaF2 laser[J]. Opt. Lett., 2008, 33(23): 2770-2772.
[31] P. Russbueldt, T. Mans, G. Rotarius, et al. 400 W Yb:YAG innoslab fs-amplifier [J]. Opt. Express., 2009, 17(15): 12230-12245.
[32] P. Russbueldt, T. Mans, G. Rotarius, et al. Compact diode-pumped 1.1 kW Yb:YAG innoslab femtosecond amplifier [J]. Opt. Lett., 2010, 35(24):4169-4171.
[33] M. Schulz, R. Riedel, A. Willner, et al. YbYAG innoslab amplifier:efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification[J]. Opt.Lett., 2011, 36(13): 2456-2457.
[34] H. J. Strauss, D. Preussler, M. J. D. Esser, et al. 330mJ single-frequency Ho:YLF slab amplifier [J]. Opt. Lett., 2013, 38(7): 1022-1024.
[35] Mathias Siebold, Markus Loeser, Gunter Harzendorf, et al. High-energy diode-pumped D2O-cooled multislab Yb:YAG and Yb:QX-glass lasers [J]. Opt.Lett., 2014, 39(12): 3611-3613.
[36] Saumyabrata Banerjee, Klaus Ertel, Paul D. Mason, et al. a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser [J]. Opt.Express., 2015, 23(15): 19542-19551.
[37] A. Giesen, H. Hügel, A. Voss, et al. Scalable concept for diode-pumped high-power solid-state lasers [J]. Appl. Phys. B., 1994, 58(5): 365-372.
[38] T. Gottwald et al. Recent disk laser development at TRUMF [C]. Pro. SPIE 8547, High power lasers 2012: Techbology and systems, 85470C(2012).
[39] T. Gottwald et al. Recent disk laser development at TRUMF [C]. Pro. SPIE 8898, Technologies for optical ermeasures X; and High-Power Lasers 2013:
[40] Birgit Weichelt, Andreas Voss, Marwan Abdou Ahmed, et al. Enhanced performance of thin-disk lasers by pumping into the zero-phonon line [J]. Opt. Lett., 2012, 37(15): 3045-3047.
[41] Stefan Piehler, Birgit Weichelt, Andreas Voss, et al. Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors [J].Opt. Lett., 2012, 37(24): 5033-5035.
[42] Yuan Han Peng, Yu Xian Lim, James Cheng, et al. Near fundamental mode 1.1 kW Yb:YAG thin-disk laser [J]. Opt. Lett., 2013, 38(10): 1709-1711.
[43] Sven- Silvius Schad, Vincent Kuhn, Tina Gottwald, et al. Near fundamental mode high-power thin-disk laser [C]. Pro. SPIE 8959, Solid State lasers XXIII: Technology and Devices, 89590U (February 28,2014); doi:10.1117/12.2046889.
[44] Clara J. Saraceno, Florian Emaury, Oliver H. Heckl, et al. 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment [J]. Opt. Express., 2012, 20(21): 23535-23541.
[45] Jonathan Brons, Vladimir Pervak, Elena Fedulova, et al. Power-scaling a kerr-lens mode-locked Yb:YAG thin-disk oscillator via enlarging the cavity mode in the kerr-medium [C]. SM4F.7, CLEO:2014 OSA.
[46] Clara J. Saraceno, Florian Emaury, Cinia Siber, et. Al. Ultrafast thin disk laser with 80 J pulse energy and 242 W of average power [J]. Opt. Lett., 2014, 39(1): 9-12.
[47] Peng Wan, Lih-Mei Yang, and Jian Liu. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers [J]. Opt. Express., 2013, 21(24): 29854-29859.
[48] Basov N G, Krokhin O N, Popo Y M. Production of negative-temperature states in p-n junctions of degenerate semiconductors [C]. Sov. Phy. JETP, 13, 1320-1321 (1961).
[49] Hall R N, Fenner G E, Kingsley J D, et al. Coherent light emission from GaAs junctions [J]. Phys. Rev. Lett., 1962, 9(9): 366-368.
[50] T. Südmeyer, C. Kränkel, C. R. E. Baer, et al. High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation [J]. Appl. Phys. B, 2009, 97: 281-295 .
[51] O. Renault, N. Barrett, A. Bailly, et al. Energy-filtered XPEEM with NanoESCA using synotron and laboratory X-ray sources: Principles and first demonstrated results. Surface Science., 2007,601:4727-4732.
[52] J. D. Koralek, J. F. Douglas, N. C. Plumb, et al. Experimental setup for low-energy laser-based angle resolved photoemission spectroscopy. Rev. Sci. Instrum., 2007, 78:053905.
[53] Yu Zhongsheng, Liu Jiao, Liu Jun, et al. Study of the distributed thermal lens of LD end pumped rectangular gain [J]. Opt. Express., 2013, 21(20): 23197-23205.
[54] 陈林,贺少勃,刘建国等.新一代百千瓦高平均功率板条激光器研究进展[J]. 激光与光电子学进展,2009,46 (1): 37-42.
[55] E. Stiles. New developments in IPG fiber laser technology[C]. In Proceedings of the 5th International Workshop on Fiber Lasers(2009).
[56] http://optics.org/news/3/10/44.
[57] J. Osterhoff, A. Popp, Zs. Major, et al. Generation of Stable, Low-Divergence Electron Beams by Laser-Wakefield Acceleration in a Steady-State-Flow Gas Cell. Phys. Rev. Lett., 2008, 101:085002.
[58] Christian Bressler and Majed Chergui. Ultrafast X-ray Absorption Spectroscopy. Chem. Pev., 2004, 104:1781-1812.
[59] N. Coluccelli, G. Galzerano, L. Bonelli,et al. Diode-pumped passively mode-locked Yb:YLF laser [J]. Opt Express, 2008, 16(5): 2922-2927.
[60] J. Kawanaka, K. Yamakawa, H. Nishioka,et al. 30 mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier [J]. Opt. Lett., 2003, 28(21): ,2121-2123.
[61] D. E. Miller, L. E. Zapata, D. J. Ripin,et al. Sub-picosecond pulses at 100W average power from a Yb:YLF chirped-pulse amplification system [J]. Opt. Lett.,2012, 37(13): 2700-2702.
[62] V. Petit, J. L. Doualan, P. Camy,et al. CW and tunable laser operation of Yb3+ doped CaF2 [J]. Appl. Phys.B., 2004, 78(6): 681-684.
[63] A. Lucca, M. Jacquemet, F. Druon, et al. High-power tunable diode-pumped Yb3+:CaF2 laser [J]. Opt.Lett., 2004, 29(16):1879-1881.
[64] A. Lucca, G. Debourg, M. Jacquemet,et al. High-power diode-pumped Yb3+:CaF2 femtosecond laser [J]. Opt.Lett., 2004, 29(23): 2767-2769.
[65] J. Boudeile J. Didierjean, P. Camy, J. L. Doualan , et al. Thermal behavior of ytterbium-doped fluorite crystals under high power pumping [J], Opt. Express., 2008, 16(14):10098-10109.
[66] Sandrine Ricaud, Frédéric Druon, Dimitris N. Papadopoulos, et al. Short-pulse and high-repetition-rate diode-pumped Yb:CaF2 regenerative amplifier [J]. Opt. Lett., 2010, 35(14): 2415-2417.
[67] S. Ricaud, P. Georges, P. Camy,et al. Diode-pumped regenerative Yb:SrF2 amplifier [J]. Appl. Phys. B, 2012, 106: 823-827.
[68] Alizée MARECAKO, Vincent CLET, Antoine COURJAUD, et al. 100 mJ level Yb:CaF2 regenerative amplifier for multipulse femtosecond regime [C]. Advanced Solid-State Lasers Congress Technical Digest OSA, 2013.
[69] Alexander Kessler, Marco Hornung, Sebastian Keppler, et al. 16.6 J chirped femtosecond laser pulses from a diode-pumped Yb:CaF2 amplifier [J]. Opt. Lett., 2014, 39(6):1333-1336.
[70] G. Andriukaitis, E. Kaksis, G. Polónyi,et al. 220-fs 110-mJ Yb:CaF2 Cryogenic Multipass Amplifier [C]. CLEO, 2015.
[71] H. Sayinc, U. Buenting, D. Wandt,et al. Ultrafast high power Yb:KLuW regenerative amplifier [J]. Opt. Express., 2009, 17(17): 15068-15071.
[72] G. H. Kim, J. H. Yang, D. S. Lee,et al. Femtosecond laser based on Yb:KYW crystals with suppression of spectral narrowing in a regenerative amplifier by spectral profiling of the pulse [J]. J. Opt. Technol., 2013, 80(3): 142-147.
[73] Detlef Nickel, Christian Stolzenburg, Adolf Giesen,et al. Ultrafast thin-disk Yb:KY(WO4)2 regenerative amplifier with a 200-kHz repetition rate [J]. Opt. Lett., 2004, 29(23): 2764-2766 .
[74] M. Delaigue, I. MANEK-HӦNNINGER, F. SALIN, et al. 300kHz femtosecond Yb:KGW regenerative amplifier using an acousto-optic Q-switch [J]. Appl. Phys. B, 2006, 84: 375-378.
[75] Julien Pouysegur, Martin Delaigue, Clemens Hönninger, et al. Generation of 150-fs pulses from a diode-pumped Yb:KYW nonlinear regenerative amplifier [J]. Opt. Express., 2014, 22(8): 9414-9419.
[76] G. H. Kim, J. Yang, S. A. Chizhov, et al. High average-power ultrafast CPA Yb:KYW laser system with dual-slab amplifier [J]. Opt. Express., 2012, 20(4): 3434-3442.
[77] M. SIEBOLD, M. HORNUNG, J. HEIN, et al. A high-average-power diode-pumped Nd:YVO4 regenerative laser amplifier for picosecond-pulses [J]. Appl. Phys. B, 2004, 78: 287-290.
[78] J. KLEIBAUER, R. KNAPPE, R. WALLENSTEIN. 13-W picosecond Nd:GdVO4 regenerative amplifier with 200-kHz repetition rate [J]. Appl. Phys. B.,2005, 81:163-166.
[79] J. KLEIBAUER, R. KNAPPE, R. WALLENSTEIN. A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet [J]. Appl. Phys. B.,2005, 80: 315-320.
[80] Y. Akahane, M. Aoyama, K. Ogawa, et al. High-energy, diode-pumped, picosecond Yb:YAG chirped-pulse regenerative amplifier for pumping opti cal parametric chirped-pulse amplification [J]. Opt. Lett., 2007, 32(13): 1899-1901.
[81] Shigeki Tokita, Junji Kawanaka, Yasukazu Izawa,et al. 23.7-W picosecond cryogenic-Yb:YAG multipass amplifier [J]. Opt. Express., 2007, 15(7): 3955-3961.
[82] Federico J. Furch, Brendan A. Reagan, Bradley M. Luther, et al. Demonstration of an all-diode-pumped soft x-ray laser [J]. Opt. Lett., 2009, 34(21): 3352-3354.
[83] Markus Lührmann, Christian Theobald, Rid Wallenstein, et al. High energy CW-diode pumped Nd:YVO4 regenerative amplifier with efficient second harmonic generation [J]. Opt. Express., 2009, 17 (25): 22761-22766.
[84] Kyung-Han Hong, Juliet T. Gopinath, Darren Rand, et al. High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier [J]. Opt. Lett., 2010, 35(11): 1752-1754.
[85] Darren A. Rand, Scot E. J. Shaw, Juan R. Ochoa, et al. Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG [J]. Opt. Lett., 2011, 36(3): 340-342 .
[86] Y. Takeuchi, J. Kawanaka, A. Yoshida,et al. Sub-kHz cryogenic Yb:YAG regenerative amplifier by using a total-reflection active mirror [J]. Appl. Phys. B., 2011, 104: 29-32.
[87] Yasuki Takeuchi, Hiroaki Furuse, Akira Yoshida, et al. Chirped-Pulsed Yb3+:YAG regenerative amplifier using a total-reflection active mirror [C]. ASSP, 2011
[88] A. H. Curtis, B. A. Reagan, K. A. Wernsing, et al. Demonstration of a compact 100 Hz, 0.1 J, diode-pumped picosecond laser [J]. Opt. Lett., 2011, 36(11): 2164-2166.
[89] Saumyabrata Banerjee, Klaus Ertel, Paul D. Mason, et al. High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier [J]. Opt. Lett., 2012, 37(12): 2175-2177.
[90] Antonio Agnesi, Luca Carrà, Riccardo Piccoli, et al. Nd:YVO4 amplifier for ultrafast low-pass lasers [J]. Opt. Lett., 2012, 37(17): 3612-3614.
[91] Antonio Agnesi, Luca Carrà, Riccardo Piccoli, et al. Low rpetition rate, hybrid fiber/solid-state, 1064 nm picosecond oscillator power amplifier laser system [J]. J. Opt. Soc. Am. B., 2013, 30 (11): 2960-2965.
[92] Chun-Lin Chang, Peter Krogen, Kyung-Han Hong, et al. High-energy, kHz, Picosecond hybrid Yb-doped chirped-pulse amplifier [J]. Opt. Express., 2015, 23(8): 10132-10144.
[93] 麻云凤,樊仲维,牛岗等. 重复频率100 kHz,平均功率2.5 W的皮秒脉冲再生放大器[J]. 中国激光,2010, 37(11): 1-4.
[94] Jiaxing Liu, Wei Wang, Zhaohua Wang, Zhiguo Lv, Zhiyuan Zhang and Zhiyi Wei. Diode-Pumped High Energy and High Average Power All-Solid-State Picosecond Amplifier Systems[J]. Appl. Sci., 2015, 5: 1590-1602.
[95] Charles J. Koester and Elias Snitzer. Amplification in a fiber laser [J]. Appl. Opt., 1964, 3(10):1182-1186.
[96] Donna Strickland and Gerard Mourou. Compression of amplified chirped optical pulses [J]. Opt. comm., 1985, 56(3): 219-221.
[97] J. Limpert, T. Seiber, T. Clausnitzer, et al. High-power femtosecond Yb-doped fiber amplifier [J]. Opt. Express.,2002, 10 (14): 628-638.
[98] J. Limpert, T. Seiber, S. Nolte, et al. High-power air-clad large-mode-area photonic crystal fiber laser [J]. Opt. Express., 2003, 11(7): 818-823.
[99] F. Röser, J. Rothhard, B. Ortaç, et al. 132 W 220 fs fiber laser system [J]. Opt. Express., 2005, 30 (20): 2754-2756.
[100] Tino Eidam, Steffen Hädrich, Fabian Röser, et al. A 325-W-Average-Power Fiber CPA system delivering sub-400 fs pulses [J]. IEEE J. Sel. Topics Quantum Electron, 2009, 15(1): 187-190.
[101] Tino Eidam, Steffen Hanf, Enrico Seise, et al. Femtosecond fiber CPA system emitting 830 W average output power [J]. Opt. Lett., 2010, 35 (2): 94-96.
[102] Jan Rothhardt, Tino Eidam, Steffen Hädrich, et al. 135 W average-power femtosecond pulses at 520 nm from a frequency-doubled fiber laser system [J]. Opt. Lett., 2011, 36 (3): 316-318.
[103] Peng Wan, Lih-Mei Yang, and Jian Liu. All-fiber Yb-doped high energy high power femtosecond fiber lasers [J]. Opt. Express., 2013, 21 (24): 29854-29859.
[104] Hans-Jürgen Otto, Fabian Stutzki, Norbert Modsching, et al. 2 kW average power from a pulsed Yb-doped rod-type fiber amplifier [J]. Opt. Lett., 2014, 39 (22): 6446-6449.
[105] F. Röser, D. Schimpf, O. Scht, et al. 90 W average power 100 uJ energy femtosecond fiber chirped-pulse amplification system [J]. Opt. Lett.,2007, 32(15): 2230-2232.
[106] F. Röser, T. Eidam, J. Rothhardt, et al. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system [J]. Opt. Lett., 2007, 32 (24): 3495-3497.
[107] Tino Eidam, Jan Rothhardt, Fabian Stutzki, et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power [J]. Opt. Express., 2010, 19 (1): 255-260.
[108] Arno Klenke, Enrico Seise, Stefan Demmler, et al. Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy [J]. Opt. Express., 2011, 19 (24): 24280-24285 .
[109] Ori Katz, Yoav Sintov. Strictly all-fiber picosecond ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control [J]. Opt. Commun., 2008, 281: 2874-2878.
[110] Pranab K. Mukhopadhyay, Kıanç Ӧzgören, Ì. Levent Budunoɡlu, et al. All-Fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator [J]. IEEE J. Sel. Topics Quantum Electron,2009, 15(1): 145-152.
[111] A. Fernández, L. Zhu, A. J. Verhoef, et al. Broadly tunable carrier envelope phase stable optical parametric amplifier pumped by a monolithic yeeterbium fiber amplifier [J]. Opt. Lett., 2009, 34(18): 2799-2801.
[112] H. Kalaycloglu, B. Oktem, P. P. Paltani, et al.Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-inteegrated nonlinear chirped-pulse amplifier [J]. Opt. Lett., 2010, 35(7): 959-961.
[113] A. Fernández, L. Zhu, A. J. Verhoef, et al. Pulse fidelity control in a 20 uJ sub-200-fs monolithic Yb-fiber amplifier [J]. Laser. Phys., 2011, 21(7): 1329-1335.
[114] Jian Zhao, Wenxue Li, Chao Wang, et al. Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation [J]. Opt. Express., 2014, 22(26): 32214-32219.
[115] Xueyuan Du, Hanwei Zhang, Pengfei Ma, et al. Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser[J]. Opt. Lett., 2015, 40)22): 5311-5314.
[116] Jiang Liu, Hongxing Shi, Kun Liu, et al. 210 W single-frequency,single-polarization, thulium-doped all-fiber MOPA [J]. Optics Express, 2013, 22(11):13572-13578.
[117] Bülend Ortaç, Jens Limpert, and Andreas Tünnermann. High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime [J]. Opt. Lett., 2007, 32 (15): 2149-2151 .
[118] Caroline Lecaplain, Clovis Chédot, Ammar Hideur, et al. High-power all-normal-dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser [J]. Opt. Lett., 2007, 32 (18): 2738-2740.
[119] Bülend Ortaç, Martin Baumgart, Jens Limpert, et al. Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers [J]. Opt. Lett., 2009, 34(10): 1585-1587.
[120] Caroline Lecaplain, Bülend Ortaç, Guillaume Machinet, et al. High-energy femtosecond photonic crystal fiber laser [J]. Opt. Lett., 2010, 35(19): 3156-3158.
[121] Simon Lefrançois, Khanh Kieu, Yujun Deng, et al. scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber [J]. Opt. Lett., 2010, 35(10), 1569-1571.
[122] Martin Baumgartl, Florian Jansen, Fabian Stutzki, et al. High average and peak power femtosecond large-pitch photonic-crystal-fiber laser [J]. Opt. Lett., 2011, 36(2): 244-246.
[123] Martin Baumgartl, Caroline Lecaplain, Ammar Hideur, et al. 66 W average power from a microjoule-class sub-100 fs fiber oscillator [J]. Opt. Lett., 2012, 37(10), 1640-1642.
[124] Chi Zhang, Yu-ying Zhang, Ming-lie Hu, et al. Wavelength tunable high energy femtosecond laser pulses directly generated from large-mode-area photonic crystal fiber [J]. Opt. Commun., 2012, 285(10): 2715-2718.
[125] Pingxue Li, Ziqiang Zhao, Junjie Chi, et al. Tunable picosecond SESAM mode-locking ytterbium-doped double-clad LMA PCF oscillator [J]. Opt. Commun., 2014, 317(15): 62-66.
[126] Ruiyun He,Qiang An, Javier R. Vázquez de Aldana, et al. Femtosecond-laser micromachined optical waveguides in BiGe3O12 crystals [J]. Appl. Opt., 2013, 52(16): 3713-3718.
[127] Masaaki Sakakura, Tsutomu Sawano, Yasuhiko Shimotsuma, et al. Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam [J]. Opt. Express., 2010, 18(12): 12136-12143.
[128] Tomas Kohoutek, Mark A. Hughes, Jiri Orava, et al. Direct laser writing of relief diffraction gratings into a bulk chalcogenide glass [J]. J. Opt. Soc. Am. B, 2012, 29(10),2779-2786.
[129] Christos Grivas, Costantino Corbari, Gilberto Brambilla, et al. Tunable, continuous-wave Ti:Sapphire channel waveguide lasers writeen by femtosecond and picosecond laser pulses [J]. Opt. Lett., 2012, 37(22): 4630-4632.
[130] Xiaoshi Zhang, Eric Schneider, Greg Taft, et al. Multi-microjoule, MHz repetition rate Ti:Sapphire ultrafast regenerative amplifier system [J]. Opt. Express., 2012, 20(17): 7015-7021.
[131] Zhang Wei, Teng Hao, Wang Zhao-Hua, et al. A ring Ti:sapphire regenerative amplifier for high energy chirped pulse amplification [J]. Acta phys. Sin., 2013, 62(10): 104211-1-104211-6.
[132] D. Breitling, C. Föhl, F. Dausinger, et al. In Femtosecond Technology for Technical and Medical Applications, ed. By F. Dausinger, F. Lichtner, H. Lubatschowski, pp. 131-154(Springer, Berlin Heidelberg New York, 2004)
[133] Jochen Dörring, Alexander Killi, Uwe Morgner,et al. Period doubling and deterministic chaos in continuously pumped regenerative amplifiers [J]. Opt Express, 2004, 12(8): 1759-1768.
[134] M. Grishin, V. Gulbinas, and A. Michailovas. Dynamics of high repetition rate regenerative amplifiers [J]. Opt Express., 2007, 15(15): 9434-9443.
[135] 刘杰,杨济民,何京良. LD抽运Nd:YVO4、Nd:GdVO4和Nd:YAG激光特性研究[J]. 激光杂志,2003, 24(5): 28-30.
[136] 田宏宾,王丽. Nd:YVO4和Nd:YAG全固态激光器输出特性的比较分析[J]. 激光与光电子学进展,2005, 42(3): 15-18.
[137] Guizhong Wang, Fei Meng, Chen Li, et al. 500 MHz spaced Yb:fiber laser frequency comb without amplifiers [J]. Opt. Lett., 2014, 39: 2534-2536.
[138] A. B. Grudinin, D. J. Ridson, and D. N. Payne. Passive harmonic modelocking of a fibre soliton ring laser [J]. Electron. Lett., 1993, 29(21):1860-1861.
[139] Wei-Wei Hsiang, Chian-Yu Lin, Ming-Feng Tien, et al. Direct generation of a 10 GHz 816 fs pulse train from an erbium-fiber soliton laser with asynonous phase modulation [J]. Opt. Lett., 2005, 30(18): 2493-2495.
[140] Z.X. Zhang, L. Zhan, X.X. Yang, et al. Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz [J]. Laser Phys. Lett., 2007, 4: 592-596.
[141] Caroline Lecaplain and Philippe Grelu. Multi-gigahertz repetition-rate-able passive harmonic mode locking of a fiber laser [J]. Opt. Express., 2013, 21(9): 10897-10902.
[142] Nick G. Usechak and Govind P. Agrawal. Tunable, high-repetition-rate, harmonically mode-locked ytterbium fiber laser [J]. Opt. Lett., 2004, 29(12): 1360-1362.
[143] Shian Zhou, Dimitre G. Ouzounov, Frank W. Wise. Passive harmonic mode-locking of a soliton Yb fiber laser at repetition rate to 1.5 GHz [J]. Opt. Lett., 2006, 31(8): 1041-1043.
[144] Kong Ling-jie, Xiao Xiao-Sheng, and Yang Chang-Xi. Passive harmonic mode locked all-normal-dispersion Yb-doped fibre lasers [J]. Chin. Phys. B., 2011, 20(2): 024207-1-024207-5 .
[145] Junli Wang, Xiaobao Bu, Rui Wang, et al. All-normal-dispersion passive harmonic mode-locking 220 fs ytterbium fiber laser [J]. Appl. Opt., 2014, 53(23): 5088-5091.
[146] Xiaojun Zhu, Chinhua Wang, Shixin Liu, et al. Tunable High-Order Harmonic Mode-Locking in Yb-Doped Fiber Laser With All-Normal Dispersion [J]. IEEE Photon. Technol. Lett., 2012, 24(9): 754-756.
[147] Tiziana Cimei, Anna Rita Bizzarri, Salvatore Cannistraro, et al. Vibrational coherence in Azurin with impulsive excitation of the LMCT absorption band [J]. Chem. Phys. Lett., 2002, 362 (5): 497-503.
[148] P. Vöhringer, D. C. Arnett, T.-S. Yang, et al. Time-gated photon echo spectroscopy in liquids [J]. Chem. Phys. Lett., 1995, 237 (5): 387-398.
[149] J. M. Evans, D. E. Spence, D. Burns, et al. Dual-wavelength self-mode-locked Ti:sapphire laser [J]. Opt. Lett., 1993, 18 (13): 1074-1076.
[150] Zhiyi Wei, Yohei Kobayashi, Zhigang Zhang, et al. Generation of two-color femtosecond pulses by self-synonizing Ti:sapphire and Cr:forsterite lasers [J]. Opt. Lett., 2001, 26 (22): 1806-1808.
[151] Dai Yoshitomi, Yohei Kobayashi, Hideyuki Takada, et al. 100-attosecond timing jitter between two-color mode-locked lasers by active-passive hybrid synonization [J]. Opt. Lett., 2005, 30 (11): 1408-1410.
[152] G. Q. Xie, D. Y. Tang, H. Luo, et al. Dual-wavelength synonously mode-locked Nd:CNGG laser [J]. Opt. Lett., 2008, 33 (16): 1872-1874.
[153] W. Shuicai, H. Junfang, X. Dong, et al. A three-wavelength Ti:sapphire femtosecond laser use with the multi-excited photosystem II [J]. Appl. Phys. B., 2001, 72 (7): 819-821.
[154] L. R. Chen, G. E. Town, P.-Y. Cortès, et al. Dual-wavelength, actively mode-locked fibre laser with 0.7 nm wavelength spacing [J]. Electron. Lett. 36 (23): 1921-1923.
[155] Shilong Pan and Caiyun Lou et al. Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation [J]. IEEE Photon. Tech. Lett., 2006, 18 (13): 1451-1453.
[156] D. Pudo and L.R. Chen et al. Actively mode locked, quadruple-wavelength fibre laser with pump-controlled wavelength switching [J]. Electron. Lett., 2003, 39 (3): 272-274.
[157] Zhiyu Yan, Xiaohui Li, Yulong Tang, et al. Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution [J]. Opt Express, 2015, 23(4): 4369-4376.
[158] Jaroslaw Sotor, Grzegorz Sobon, Iwona Pasternak, et al. Simultaneous mode-locking at 1565 nm and 1944 nm in fiber laser based on common graphene saturable absorber [J]. Opt. Express, 2013, 21 (16): 18994-19002.
[159] H. Zhang, D. Y. Tang, X. Wu et al. Muti-wavelength dissipative soliton operation of an erbium-doped fiber laser [J]. Opt. Express., 2009, 17 (15): 12692-12697.
[160] Zhi-Chao Luo, Ai-ping Luo, Wen-Cheng Xu, et al. Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter [J]. IEEE Photon. J., 2010, 2 (4): 571-577.
[161] Y.D. Gong, X.L. Tian, M. Tang, P. Shum, et al. Generation of dual wavelength ultrashort pulse outputs from a passive mode-locked fiber ring laser [J]. Opt. Commun., 2006, 265(2): 628-631.
[162] Zhi-Chao Luo, Ai-Ping Luo, and Wen-Cheng. Xu. Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter [J]. IEEE Photonics J., 2011, 3 (1): 64-70.
[163] Z. X. Zhang, Z. W. Xu, and L. Zhang. Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter [J]. Opt. Express., 2012, 20 (24): 26736-26742.
[164] Z W Xu and Z X Zhang. All-normal-dispersion multi-wavelength dissipative soliton Yb-doped fiber laser [J]. Laser Phys. Lett., 2013, 10: 085105.
[165] Xiaojun Zhu, Chinhua Wang, Guoan Zhang and et al. Tunable dual- and triple-wavelength mode-locked all-normal-dispersion Yb-doped fiber laser [J]. Appl. Phys. B., 2014, 118 (1): 69-73.
[166] Shisheng Huang, Yonggang Wang, Peiguang Yan,et al. Tunable and switchable multi-wavelength dissipative soliton generation in a grapheme oxide mode-locked Yb-doped fiber laser [J]. Opt. Express., 2014, 22 (10): 11417-11426.
[167] 石顺祥,陈国夫,赵卫等. 非线性光学[M].西安:西安电子科技大学出版社,2003.
[168] Paull L. Kelley, Ivan P. Kaminow, Govind P. Agrawa. Nonlinear Fiber Optics [M]. A Harcourt Science and Technology Company and Harcourt Place, 32 Jamestown Road, London NW1 7BY, UK.
[169] M. Zhang, E. J. R. Kelleher, F. Torrisi, et al. Tm-doped fiber laser mode-locked by grapheme-polymer composite [J]. Opt. Express., 2012, 20(22): 25077-25084.
[170] Andrey Komarov, Konstantin Komarov, Hervé Leblond and et al. Spectral-ive management of dissipative solitons in passive mode-locked fiber lasers [J]. J. Opt. A: Pure Appl. Opt., 2007, 9(12): 1149-1156.
[171] Chong C Y. Femtosecond fiber lasers and amplifiers based on the pulse propagation at normal dispersion [D]. Cornell University, 2008.
[172] Xing Fu, Qiang Liu, Peilin Li, et al. Numerical simulation of 30-kW class liquid-cooled Nd:YAG multi-slab resonator [J]. Opt. Express., 2015, 23(14): 18458-18470.
[173] Jinwei Zhang, Jonathan Brons, Nikolai Lilienfein, et al. 260-megahertz, megawatt-level thin-disk oscillator [J]. Opt. Lett., 2015, 40(8): 1627-1630.
[174] Zhi Zhao, Bruce M. Dunham, and Frank W. Wise. Generation of 167 W infrared and 124 W green power from a 1.3-GHz, 1-ps rod fiber amplifier [J]. Opt. Express., 2014, 22 (21): 25065-25070.
[175] 祝宁华,闫连山,刘建国. 光纤光学前沿[M]. 北京:科学出版社,2011.
[176] F. M. Mitschke and L. F. Mollenauer. Ultrashort pulses from the soliton laser [J]. Opt. Lett., 1987, 12 (6): 407-409.
[177] V. Cautaerts. Stretched pulse Yb3+:solica fiber laser [J]. Opt. Lett., 1997, 22 (5): 316-318.
[178] V. I. Kruglov, D. Méchin, and J. D. Harvey. Self-similar solutions of the generalized Södinger equation with distributed coefficients [J]. Opt. Express., 2004, 12 (25): 6198-6207.
[179] Andy Chong, William H. Renninger, and Frank W. Wise. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ [J]. Opt. Lett., 2007, 32 (16): 2048-2410.
[180] Xiaojun Zhu, Chinhua Wang, Guoan Zhang and et al. Tunable dual- and triple-wavelength mode-locked all-normal-dispersion Yb-doped fiber laser [J]. Appl. Phys. B., 2014, 118 (1):, 69-73 .
[181] Pingxue Li, Ziqiang Zhao, Junjie Chi, et al. Tunable picosecond SESAM mode-locking ytterbium-doped double-clad LMA PCF oscillator [J]. Opt. Commun., 2014, 317(15): 62-66.
[182] Pierre Deslandes, Mathias Perrin, Julien Saby, et al. Picosecond to femtosecond pulses from high power self mode-locked ytterbium rod-type fiber laser [J]. Opt. Express., 2013, 21(9): 10731-10738.
[183] R. R. Gattass and E. Mazur. Femtosecond laser micromaching in transparent materials [J]. Nat. Photonics, 2008, 2 (4): 219-225.
[184] Florian Adler, Kevin C. Cossel, Michael J. Thorpe, et al. Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 um [J]. Opt. Lett., 2009, 34 (9): 1330-1332.
[185] Nicola Coluccelli, Alessio Gambetta, Davide Gatti, et al. 1.6-W self-referenced frequency comb at 2.06 um using a Ho:YLF multipass amplifier [J]. Opt. Lett., 2011, 36 (12): 2299-2301.
[186] Ming Yan, Wenxue Li, Kangwen Yang, et al. High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification [J]. Opt. Lett., 2012, 37 (9): 1511-1513.
[187] C. K. Nielsen, B. Ortaç, T. Seiber, et al. Self-starting self-similar all-polarization maintaining Yb-doped fiber laser [J]. Opt. Express., 2005, 13(23): 9346-9351.
[188] Andy Chong, William H. Renninger, and Frank W. Wise. Environmentally stable all-normal-dispersion femtosecond fiber laser [J]. Opt. Lett., 2008, 33(10): 1071-1073.
[189] B. Ortaç, C. Lecaplain, A. Hideur, et al. Passively mode-locked single-polarization microstructure fiber laser [J]. Opt. Express., 2008, 16(3): 2122-2128.
[190] John A. Parrish, and Brian C. Wilson. Current and future trends in laser medicine [J]. Photochemistry and Photobiology, 1991, 53(6): 731-738.
[191] Chris Xu, Warren Zipfel, Jason B. Shear, et al. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy[J]. Pro. Natl. Acad. Sci., 1996, 93(20):10763-10768.
[192] M. Lewenstein, Ph. Balcou. M. Yu. Ivanov, et al. Theory of high-harmonic generation by low-frequency laser fields [J]. Phys. Rev. A., 1994, 49(3): 2117-2132.
[193] P. M. Paul, E. S. Toma, P. Breger, et al. Observation of a Train of Attosecond Pulses from High Harmonic Generation [J]. Science., 2001, 292(5522):1689-1692.
[194] 石顺祥,王学恩,刘劲松. 物理光学与应用光学[M]. 西安:西安电子科技大学出版社,2008.
[195] V. I. Kruglov, A. C. Peacock, J. M. Dudley, and et al. Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers [J]. Opt. Lett., 2000, 25(24): 1753-1755 .
中图分类号:

 11    

馆藏号:

 11-33818    

开放日期:

 2016-12-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式