- 无标题文档
查看论文信息

中文题名:

 基于智能手机的 GNSS/INS 组合定位方法研究    

姓名:

 张晓龙    

学号:

 19021210733    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080902    

学科名称:

 工学 - 电子科学与技术(可授工学、理学学位) - 电路与系统    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 电子工程学院    

专业:

 电子科学与技术    

研究方向:

 电路与系统    

第一导师姓名:

 史凌峰    

第一导师单位:

  西安电子科技大学    

完成日期:

 2022-03-03    

答辩日期:

 2022-05-26    

外文题名:

 Research on GNSS/INS Combined Positioning Method Based on Smartphone    

中文关键词:

 GNSS ; PDR ; 组合定位 ; 无缝定位 ; 单点定位    

外文关键词:

 GNSS ; PDR ; Combined Positioning ; Seamless Positioning ; Single Point Positioning    

中文摘要:

近年来,随着人们对基于位置服务的需求越来越强烈,作为日常生活中使用最广 泛的智能设备,基于智能手机的定位服务越来越多的受到了人们的关注。就目前而言, 使用基于智能手机的 GNSS 芯片进行定位,在开阔环境下可以满足行人的日常定位 需求,但是当受到建筑物或树荫遮挡时,卫星信号损失严重,对于室内场景更是如此。 基于这一事实,本文提出了用于行人定位的 GNSS/PDR 组合定位优化方法,拟通过 二者相结合,实现复杂场景下的精确定位。本文的具体工作内容包括: 1.提出了 GNSS/PDR 组合定位优化方法。首先通过 GNSS 多普勒测速获得行人 的位置改变量,然后根据当前速度的大小推断航向角误差是否在可接受的范围内,通 过得到的位置改变量和航向角这两个信息,使用卡尔曼滤波算法计算 PDR 步长误差 和航向误差,以此进行误差校正,得到行人定位的最终结果。 2.设计了通过三轴加速度方向进行特殊步态(侧移,后退)的识别方法。首先使 用通过智能手机惯性、磁传感器采集的数据进行融合来解算手机的姿态,获取手机的 姿态矩阵。然后利用姿态矩阵将加速度数据从载体坐标系转换到导航坐标系,根据加 速度数据三轴的方向和航向角的变化量来判断行人当前所作的动作是否是特殊的步 态,避免在特殊步态下 PDR 误检测的发生。 3.改进了标准单点定位算法。首先对原始观测数据进行数据预处理,剔除不良的 观测数据,然后使用多普勒测速获得较高精度的位置变化量,通过卡尔曼滤波法将位 置改变量和位置先验信息进行融合,使用多普勒观测值在位置域对定位结果进行了平 滑处理。 4.改善了 PDR 过程中各环节误差对定位结果的影响。首先使用峰值谷值时间阈 值结合的方式进行步数检测,以此来减少加速度数据中伪峰值对步数检测的影响。其 次使用混合步长估计模型完成行人步长的估计,相对于单一模型来讲,增加了步长估 计模型的稳健性。最后,使用改进互补滤波的方法对陀螺仪累积漂移误差进行处理, 以减少误差对姿态解算精度的影响。 最后,设计了 PDR 室内定位实验,验证了改进后的方法与传统 PDR 定位方法相 比,定位的准确性更高。同时,也设计了组合定位的实验,验证了本文所提的 GNSS/PDR 组合定位方法具有较高的定位精度,水平误差在 1-3 米的范围内,满足行 人对日常定位的基本需求。

外文摘要:

In recent years, with the increasing demand for location-based services, as the most widely used smart devices in daily life, location-based services based on smartphones have attracted more and more attention. At present, the use of smartphone-based GNSS chips for positioning can meet the daily positioning needs of pedestrians in open environments, but when blocked by buildings or shade, the satellite signal loss is serious, especially for indoor scenes. Based on this fact, this paper proposes a combined GNSS/PDR positioning optimization method for pedestrian positioning, and intends to achieve precise positioning in complex scenes by combining the two. The specific work of this paper includes: 1. A combined GNSS/PDR positioning optimization method is proposed. First, the pedestrian's position change is obtained through GNSS Doppler speed measurement, and then it is inferred whether the heading angle error is within an acceptable range according to the current speed. Through the obtained position change and heading angle, the Kalman filter is used. The algorithm calculates the PDR step error and heading error, and then performs error correction to obtain the final result of pedestrian positioning. 2. This paper proposes a method for recognizing special gaits (side shifts, back-ups). First, use the data collected by the inertial and magnetic sensors of the smartphone to fuse to calculate the attitude of the mobile phone, and obtain the attitude matrix of the mobile phone. Then use the attitude matrix to convert the acceleration data from the carrier coordinate system to the navigation coordinate system, and judge whether the pedestrian's current action is a special gait according to the direction of the three axes of the acceleration data and the change of the heading angle, so as to avoid the special gait. Occurrence of PDR false detection. 3. The standard single point positioning algorithm has been improved. Firstly, data preprocessing is performed on the original observation data, and the bad observation data is eliminated, and then the Doppler velocimetry is used to obtain a higher-precision position change. The Puller observations smoothed the localization results in the location domain. 4. Improve the influence of the errors of each link in the PDR process on the positioning results. Firstly, step detection is performed using a combination of peak-valley time thresholds as a way to reduce the effect of pseudo-peaks in acceleration data on step detection. Secondly, the mixed step size estimation model is used to complete the estimation of pedestrian step size, which increases the robustness of the step size estimation model compared with the single model. Finally, the improved complementary filtering method is used to reduce the influence of the accumulated drift error on the attitude calculation accuracy. Finally, a PDR indoor positioning experiment is designed to verify that the improved method has higher positioning accuracy than the traditional PDR positioning method. Furthermore, we design a combined positioning experiment, which verifies that the GNSS/PDR combined positioning method proposed in this paper has high positioning accuracy and that the horizontal error is within the range of 1 to 3 meters, which meets the basic positioning needs of pedestrians on a daily basis.

参考文献:

[1] 王建. 多测站多系统 GNSS/INS 精密定位方法与应用研究[D]. 山东大学, 2021.

[2] 孙梦飞. 基于智能手机的 GPS/Galileo 双频定位研究[D]. 吉林大学, 2020.

[3] 吴凡. 松耦合组合导航仿真系统的设计与实现[D]. 北京邮电大学, 2021.

[4] 李由. 基于 MEMS 惯性传感器, WiFi, 磁场特征的移动智能终端室内行人导航算法[D]. 武汉大学, 2015.

[5] Zhang X, Tao X, Zhu F, et al. Quality assessment of GNSS observations from an Android N smartphone and positioning performance analysis using time-differenced filtering approach[J]. Gps Solutions, 2018, 22(3): 1-11.

[6] 张楷时. 安卓智能终端精密定位关键技术研究[D]. 战略支援部队信息工程大学, 2019.

[7] 王颖喆,胡捷,陶贤露,刘万科,朱锋.Android 智能手机双频 GNSS 伪距差分动态定位性能分析 [J].导航定位与授时,2021,8(05):103-110.

[8] Pesyna K M, Heath R W, Humphreys T E. Centimeter positioning with a smartphone-quality GNSS antenna[C]//Proceedings of the 27th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2014). 2014: 1568-1577.

[9] Kirkko-Jaakkola M, Söderholm S, Honkala S, et al. Low-cost precise positioning using a national GNSS network[C]//Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2015). 2015: 2570-2577.

[10] Wang L, Li Z, Zhao J, et al. Smart device-supported BDS/GNSS real-time kinematic positioning for sub-meter-level accuracy in urban location-based services[J]. Sensors, 2016, 16(12): 2201.

[11] 陶贤露. 智能手机与足部 PDR 融合的大众行人无缝定位技术[D]. 武汉大学, 2019.

[12] Liu W, Shi X, Zhu F, et al. Quality analysis of multi-GNSS raw observations and a velocity-aided positioning approach based on smartphones[J]. Advances in Space Research, 2019, 63(8): 2358- 2377.

[13] 赵硕, 秘金钟, 徐彦田, 等. 双频智能手机 GNSS 数据质量及定位精度分析[J]. 测绘科学, 2020, 45(2): 22-28.

[14] Lachapelle G, Gratton P. GNSS precise point positioning with Android smartphones and comparison with high performance receivers[C]//2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP). IEEE, 2019: 1-9.

[15] Realini E, Caldera S, Pertusini L, et al. Precise GNSS positioning using smart devices[J]. Sensors, 2017, 17(10): 2434.

[16] Zhang X, Tao X, Zhu F, et al. Quality assessment of GNSS observations from an Android N smartphone and positioning performance analysis using time-differenced filtering approach[J]. Gps Solutions, 2018, 22(3): 1-11.

[17] Geng J, Jiang E, Li G, et al. An improved Hatch filter algorithm towards sub-meter positioning using only Android raw GNSS measurements without external augmentation corrections[J]. Remote Sensing, 2019, 11(14): 1679.

[18] Fortunato M, Ravanelli M, Mazzoni A. Real-time geophysical applications with Android GNSS raw measurements[J]. Remote Sensing, 2019, 11(18): 2113.

[19] 张书维, 高井祥, 赵龙, 等. 载波/多普勒平滑伪距在 Android 手机中的定位实现[J]. 测绘 通报, 2020 (4): 63.

[20] 肖青怀, 谷守周, 秘金钟, 等. 智能手机多普勒平滑伪距单点定位精度分析[J]. 测绘科学, 2020, 45(7): 11-17.

[21] 肖青怀. 智能手机实时高精度差分定位算法研究与实现[D]. 中国测绘科学研究院, 2021.

[22] Fu G M, Khider M, van Diggelen F. Android Raw GNSS measurement datasets for precise positioning[C]//Proceedings of the 33rd international technical meeting of the satellite division of the Institute of Navigation (ION GNSS+ 2020). 2020: 1925-1937.

[23] 王天文. 智能手机 GNSS 标准定位性能与精度分析[J]. 城市勘测, 2021.

[24] Zhu F, Tao X, Liu W, et al. Walker: Continuous and precise navigation by fusing GNSS and MEMS in smartphone chipsets for pedestrians[J]. Remote sensing, 2019, 11(2): 139.

[25] 张书维. 安卓智能终端 GNSS 观测值分析和 GNSS/PDR 融合算法研究[D].中国矿业大 学,2020.

[26] 郭宇扬. 基于 GNSS/INS 融合的林区消防员导航研究[D]. 北京林业大学, 2020.

[27] Wang Y, Shkel A M. Adaptive threshold for zero-velocity detector in ZUPT-aided pedestrian inertial navigation[J]. IEEE Sensors Letters, 2019, 3(11): 1-4.

[28] 周晏. 基于智能手机与 PDR 的室内定位研究[D]. 浙江工商大学, 2020.

[29] 周洁. 基于多传感器信息融合的步态识别方法研究[J]. 现代计算机: 中旬刊, 2016 (3): 40-45.

[30] Huang C, Zhang G, Jiang Z, et al. Smartphone-based indoor position and orientation tracking fusing inertial and magnetic sensing[C]//2014 International Symposium on Wireless Personal Multimedia Communications (WPMC). IEEE, 2014: 215-220.

[31] Putta R, Misra M, Kapoor D. Smartphone based indoor tracking using magnetic and indoor maps[C]//2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, 2015: 1-6.

[32] 翁少林. 基于惯性传感器的室内定位系统步长估计算法研究[D]. 厦门大学, 2017.

[33] Yuan X, Yu S, Zhang S, et al. Quaternion-based unscented Kalman filter for accurate indoor heading estimation using wearable multi-sensor system[J]. Sensors, 2015, 15(5): 10872-10890.

[34] Xia M, Xiu C, Yang D, et al. A novel PDR aided UWB indoor positioning method[C]//2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS). IEEE, 2018: 1-7.

[35] 田增山, 张媛. 基于智能手机 MARG 传感器的行人导航算法[J]. 重庆邮电大学学报 (自 然科学版), 2014, 26(2): 223-227.

[36] 廖伟迅. Klobuchar 模型的解读[J]. 韶关学院学报, 2006, 27(12): 6-8.

[37] Feng B, Tang W, Guo G, et al. An improved pedestrian ttracking method based on Wi-Fi fingerprinting and pedestrian dead reckoning[J]. Sensors, 2020, 20(3): 853.

[38] Fang L, Antsaklis P J, Montestruque L A, et al. Design of a wireless assisted pedestrian dead reckoning system-the NavMote experience[J]. IEEE transactions on Instrumentation and Measurement, 2005, 54(6): 2342-2358.

[39] Tabatabaei S A H, Gluhak A, Tafazolli R. A fast calibration method for triaxial magnetometers[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(11): 2929-2937.

[40] Liu D, Sheng B, Hou F, et al. From wireless positioning to mobile positioning: An overview of recent advances[J]. IEEE Systems Journal, 2014, 8(4): 1249-1259.

[41] Duan H, Jiang H, Wei Y. CFAR-based TOA estimation and node localization method for UWB wireless sensor networks in weibull noise and dense multipath[C]//2015 IEEE International Conference on Computational Intelligence & Communication Technology. IEEE, 2015: 308-311.

[42] Yoon J, Kim J W, Lee W Y, et al. A TDoA-based localization using precise time synchronization[C]//2012 14th International Conference on Advanced Communication Technology (ICACT). IEEE, 2012: 1266-1271.

[43] Isa A A M, Hud M M, Othman M H, et al. Analysis of WiMAX Positioning Using Received Signal-Strength Method[J]. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 2013, 5(2): 19-25.

[44] Khan M W, Salman N, Kemp A H. Cooperative positioning using angle of arrival and time of arrival[C]//2014 Sensor Signal Processing for Defence (SSPD). IEEE, 2014: 1-5.

[45] Yassin M, Rachid E. A survey of positioning techniques and location based services in wireless networks[C]//2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES). IEEE, 2015: 1-5.

[46] Zhou Y, Wang Y, Nie R, et al. Optimal Location Method of Spontaneous Data Fusion based on TDOA/AOA[C]//2021 OES China Ocean Acoustics (COA). IEEE, 2021: 885-889.

[47] Giacometti R, Baussard A, Cornu C, et al. Accuracy studies for TDOA-AOA localization of emitters with a single sensor[C]//2016 IEEE Radar Conference (RadarConf). IEEE, 2016: 1-4.

[48] Prieto J, Mazuelas S, Bahillo A, et al. NLOS mitigation prior to range estimation smoothing for wireless location systems[C]//2010 IEEE International Conference on Communications. IEEE, 2010: 1-5.

[49] Wang Z, Zekavat S A. Omnidirectional mobile NLOS identification and localization via multiple cooperative nodes[J]. IEEE Transactions on Mobile Computing, 2011, 11(12): 2047-2059.

[50] Soleimani M A, Sharafat A R. A novel geometric approach for mitigating NLOS effects in wireless location estimation[C]//2011 19th Iranian Conference on Electrical Engineering. IEEE, 2011: 1-6.

[51] Jiang D, Liu F. Multipath time of arrival estimation algorithm based on successive interference cancellation in NB-IoT systems[C]//2020 2nd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM). IEEE, 2020: 280-287.

[52] Woo S S, You H R, Koh J S. The NLOS mitigation technique for position location using IS-95 CDMA networks[C]//Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No. 00CH37152). IEEE, 2000, 6: 2556-2560.

[53] Ferreira A F G G, Fernandes D M A, Catarino A P, et al. Localization and positioning systems for emergency responders: A survey[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2836-2870.

[54] Thorbjornsen B, White N M, Brown A D, et al. Radio frequency (RF) time-of-flight ranging for wireless sensor networks[J]. Measurement Science and Technology, 2010, 21(3): 035202.

[55] Kagawa T, Li H B, Miura R. A UWB navigation system aided by sensor-based autonomous algorithm-Deployment and experiment in shopping mall[C]//2014 International Symposium on Wireless Personal Multimedia Communications (WPMC). IEEE, 2014: 613-617.

[56] Cho B G, Koo J K, Yoon B J, et al. The research of dead reckoning stabilization algorithm using different kinds of sensors[C]//ICCAS 2010. IEEE, 2010: 1089-1092.

[57] Patarot A, Boukallel M, Lamy-Perbal S. A case study on sensors and techniques for pedestrian inertial navigation[C]//2014 International Symposium on Inertial Sensors and Systems (ISISS). IEEE, 2014: 1-4.

[58] Kamil M, Haid M, Chobtrong T, et al. Hybrid indoor and outdoor positioning with mems-based inertial motion sensors[C]//Sensors and Measuring Systems 2014; 17. ITG/GMA Symposium. VDE, 2014: 1-5.

[59] Su Z, Peng Z, Jie J I N. Cascaded GPS/IMU Integrated Positioning System Based on Vehicle Kinematics Model[C]//2020 Chinese Control and Decision Conference (CCDC). IEEE, 2020: 1134-1139.

[60] Tanathong S, Lee I. Using GPS/INS data to enhance image matching for real-time aerial triangulation[J]. Computers & Geosciences, 2014, 72: 244-254.

[61] Chen X, Shen C, Zhang W, et al. Novel hybrid of strong tracking Kalman filter and wavelet neural network for GPS/INS during GPS outages[J]. Measurement, 2013, 46(10): 3847-3854.

[62] Bhatt D, Aggarwal P, Devabhaktuni V, et al. A novel hybrid fusion algorithm to bridge the period of GPS outages using low-cost INS[J]. Expert Systems with Applications, 2014, 41(5): 2166-2173.

[63] Grewal M S, Andrews A P. Kalman filtering: Theory and Practice with MATLAB[M]. John Wiley & Sons, 2014.

[64] Cheng J, Yang L, Li Y, et al. Seamless outdoor/indoor navigation with WIFI/GPS aided low cost Inertial Navigation System[J]. Physical Communication, 2014, 13: 31-43.

[65] Elloumi W, Guissous K, Chetouani A, et al. Indoor navigation assistance with a Smartphone camera based on vanishing points[C]//International Conference on Indoor Positioning and Indoor Navigation. IEEE, 2013: 1-9.

[66] Rajakaruna N, Rathnayake C, Chan K Y, et al. Image deblurring for navigation systems of vision impaired people using sensor fusion data[C]//2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, 2014: 1-6.

[67] Song J. Sliding window filter based unknown object pose estimation[C]//2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017: 2642-2646.

[68] Song J. Sliding window filter based unknown object pose estimation[C]//2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017: 2642-2646.

[69] Rau R, McClellan J H. Efficient approximation of Gaussian filters[J]. IEEE transactions on signal processing, 1997, 45(2): 468-471.

[70] 彭孝东,张铁民,李继宇,闫国琦.三轴数字 MEMS 加速度计现场标定方法[J].振动.测试与诊 断,2014,34(03):544-548.

[71] 刘宇, 李博, 邸克, 等. 基于 MEMS 加速度计的优化九位置校准算法[J]. 压电与声光, 2018, 40(5): 779.

[72] 孙枫, 曹通. 基于 Kalman 滤波的加速度计十位置标定方法[J]. 系统工程与电子技术, 2011, 33(10): 2272-2276.

[73] 刘百奇, 房建成. 一种改进的 IMU 无定向动静混合高精度标定方法[J]. 仪器仪表学报, 2008, 29(6): 1250-1254.

[74] TITTERTON D, WESTON J 著, 张天光, 王秀萍, 王丽霞等译. 捷联惯性导航技术-第 2 版 [M]. 北京: 国防工业出版社, 2007.

[75] 马帅旗. MEMS 陀螺仪参数校准方法研究[J]. 电子技术应用, 2015, 41(4): 50-52.

[76] 盛蔚, 蒋勇. 三轴磁传感器系统的在线标定[J]. 弹箭与制导学报, 2015, 35(3): 1-4.

[77] 张娇, 陈静, 杨栓虎. 三轴磁阻式传感器标定方法研究[J]. 弹箭与制导学报, 2010, 30(6): 46- 48.

[78] 李翔, 李智. 航姿参考系统三轴磁强计校正的点积不变法[J]. 仪器仪表学报, 2012, 33(8): 1813-1818.

[79] 李智, 李翔. 基于椭球假设的三轴电子罗盘罗差补偿研究[J]. 仪器仪表学报, 2011, 32(10): 2210-2215.

[80] 石玺文, 李杰, 胡陈君, 等. MEMS 三轴加速度计 6 位置标定方法的研究[J]. 电子器件, 2016, 39(2): 403-406.

中图分类号:

 TN96    

馆藏号:

 54356    

开放日期:

 2023-09-10    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式